2 0 Ju n 20 02 Units , polyhedra , and a conjecture of Satake

نویسنده

  • Jacob Sturm
چکیده

Let F/Q be a totally real number field of degree n. We explicitly evaluate a certain sum of rational functions over a infinite fan of F -rational polyhedral cones in terms of the norm map N:F → Q. This completes Sczech’s combinatorial proof of Satake’s conjecture connecting the special values of L-series associated to cusp singularities with intersection numbers of divisors in their toroidal resolutions [Sc2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Sabitov's Theorem to Polyhedra of Arbitrary Dimensions

Abstract. In 1996 Sabitov proved that the volume of an arbitrary simplicial polyhedron P in the 3-dimensional Euclidean space R satisfies a monic (with respect to V ) polynomial relation F (V, l) = 0, where l denotes the set of the squares of edge lengths of P . In 2011 the author proved the same assertion for polyhedra in R. In this paper, we prove that the same result is true in arbitrary dim...

متن کامل

ar X iv : 0 70 4 . 17 02 v 2 [ m at h . A G ] 2 6 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ar X iv : 0 70 4 . 17 02 v 3 [ m at h . A G ] 2 7 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002